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COHERENT AND INCOHERENT RADIATION FROM FREE ELECTRON LASERS
WITH AN AXIAL GUIDE FIELD

I. INTRODUCTION

Recent experiments1 -3 have amply demonstrated the usefulness of

the free electron laser as a tunable source of coherent submillimeter

radiation, and have stimulated interest in a variety of experimental

configurations. Theoretical work4 -6 in this regard has concentrated on

the case in which a relatively low density (i.e., self-field effects are

negligible) relativistic electron beam is propagated through a periodic

helically symmetric magnetic field, referred to as the "wiggler" field.

In the beam frame the wiggler field appears as a backwards propagating

electromagnetic wave, and radiation is produced by means of coherent

scattering of this wave off electromagnetic fluctuations in the beam.

Another configuration employed is one in wlich an axial guide field is

present, and is used principally, but not exclusively, in the regime in

which electron densities and currents are sufficiently high that the

axial field is required to contain the beam against the effects of the

self-fields. Theoretical analyses of the coherent radiation mechanism

in this regime have begun to appear in the literature for this config-

uration as well.
7 1 1

It is our purpose in this work to treat both the coherent and

incoherent radiation from a free electron laser configuration which

contains an axial guide field, in the low density limit. Full relativ-

istic effects are included, but the self-fields of the beam are neglected.

The principal application of this study to existing experiments is the

Stanford University free electron laser 1 ,2 in which a low current (~ 2 A),

high energy (24-43 ,eV) beam was injected into a drift tube in which
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an axial guide field of 1 kG and a wiggler field of about 2.4 kG were

applied. In this regime collective beam effects are negligible.

The organization of the paper is as follows. In Sec. II, we

discuss the single-particle trajectories of electrons in a magnetic

field geometry composed of a combined axial guide field and helical

wiggler field. The incoherent, spontaneous emission spectrum is cal-

culated in Sec. III using test particle techniques, and the linear gain

is found in Sec. IV in the limit of a low density beam. In treating a

low density beam, we restrict the analysis of the linear gain to the

small-signal regime but provide a fully kinetic derivation of the gain

based upon the Vlasov-Maxwell equations. This is in contrast to the work

of Kwan and Dawson' and Bernstein and FriedlandI0 in which collective eff-

ects due to high beam density were included in the context of a fluid theory

of the interaction. The small-signal gain has also been considered by

Friedland and Hirschfield" by means of a fluid analysis. Thus, we provide

a fully kinetic expression for the small-signal gain and an extensive des-

cription of the parametric dependence of the gain in the cold beam limit.

A summary and discussion is given in Sec. V.
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i. SINGLE-PARTICLE TRAJECTORIES

The wiggler field is generally due to a helical current winding

and the resultant field can be shown, in a self-consistent way, to be of

the form
12 ,13

A

B B0 e z + k(rz), (1)

where the wiggler field is derived from a vector potential of the form

2Bw~ 1Z A

-y - - I, (k r) cos (6 - k z)e
I A

-I, (kr) sin (e - kwz) e,) (2)

in cylindrical coordinates. In Eq. (2), Bw and 1,2~r/Xw, where wis

the wiggler period) are assumed to be constant, and I1 and I, are the

modified Bessel function of the first kind and its derivative respectively.

In most free electron laser experiments, however, the initial beam radius

is a small fraction of the wiggler period, and expansion in powers of kwr

yields

A A

w " Bw  cos kw z +e sin kw7). (3)w -Y

Rather than work in the laboratory frame, we choose to transform

to the frame rotating with the wiggler field. To this end we define

A A A A A A A A
e I = ecos z+ey sin~kz, 2 =-e x sin kwz +.ey cos kwz , e 3 = e z and

write the orbit equations corresponding to the field structure given in

(1) and (3) in the form

6L3



v 2 (k- " v3  0 -

V1 3v3 = wV2

where 20 = [jeB0/ymcl, 2w E IeBw/ymcI, and y (1 v 2/C2  Since the
total energy is a conserved quantity v2 = Vl 2 + V22 + V32 is a constant

2 1 2~v
2  3 . acntn

of the motion and Eqs. (4) are fully relativistic. The principal benefit

derived from this transformation is that the equations of motion are now

coordinate-independent, and depend only on the components of the velocity

and their derivatives.

In addition to the total energy, a second constant of the motion

can be found by elimination of v2 from (4); specifically, u - v1 - kw x

(v3  %/kw)2"2. This is analogous to the axial invariant discussed by
Davidson and Uhm,14 which in the Bw - 0 limit implies that the axial

velocity is conserved and defines the rotating frame to be that of the

Larmor rotation of an electron in a uniform magnetic field. By means of

these constants, the problem can be reduced to the solution of a single

nonlinear differential equation for v3 ,

(dx/dT) 2 + P (x) = 0, (5)

wherex =. - , = 41 t/2, v3/c' 0 = Q /k C,
3 o, 0 3 3' 0~o~o S2203x 4s202(S02  8u~2 2)( x) = x4  + 4FS0('a 0  + 1u)  x " + 8e 2  O3x + 4E 02 + - v-) ,

E_= B B0' av -v/c, and Su = u/c. Note that Eq. (5) has the trivial

solution x = 0 (i.e., v3 = constant) in the limit of a uniform axial

magnetic field (Bw -) 0).

A detailed discussion of the solutions of Eq. (5) has been given

by Freund and Drobot; however, we restrict our attention here to solutions

4



corresponding to relatively uniform axial velocities. The reason for this

is that the radiation mechanism is a resonant one in which the emission

frequency is given by w - 2yz 2kwv3, where yz = (I - v3
2/c2) 2. As a result,

variations in the axial velocity of the order of Av3 lead to a broadening

3
of the emission spectrum which scales as Aw - 2y z kwAv3. Thus, while small

oscillations in v3 about some bulk axial velocity lead to a relatively

narrow bandwidth, large oscillations can result in spectral broadening with

a corresponding decrease in the linear gain.

The conditions which lead to small oscillations in the axial

velocity can be investigated by consideration of the roots of the

pseudopotential (D(x). Physically meaningful (i.e., real) solutions are

possible only when D < 0; therefore, the real roots of the pseudopotential

correspond to the bounds on the oscillation about some bulk axial velo-

city (defined by the local minimum in D between the roots). The typical

character of the pseudopotential when e < 1 and a > 1 is shown in Fig.

1. In this regime, the pseudopotential has two real roots which for

given values of E, 0' and v shift in both position and spacing with

variations in au within some fixed range. The extrema in the ranee of

u occur when the real roots of t are degenerate, and correspond to

solutions with constant axial velocity
1 5'1 6

P v -

v= 0, (6)

v3 = v

5-----



2 2
where the axial velocity v~l is given by v2 = v2 + v3  for some choice

of the total energy.

The values of a (= + x) corresponding to the real roots of

€ are shown in Fig. 2 versus u for E = .1 and B0 = 1, and 4. Thus, the

figure describes the bounds on the oscillations in the axial velocity for

given Bu  It is important to recognize that small deviations in u from

the extrema result in trajectories which do not differ greatly from those

with uniform axial velocities. Because of this two electrons which are

characterized by only slightly different values of u and which are close

together at some point will not undergo a large separation in the course

of their orbits. To be more specific, an initially bunched electron beam

will tend to remain bunched. This describes an "orbitally stable"

uniform-v_ solution, in the sense discussed by Friedland.16 A quantitative

test for orbital stability can be expressed in the form

2 3

< 1,

which (since vil < c) is trivially satisfied for the uniform-v. trajectories

whenB 0 > 1.

In contrast, when S0 is less than unity the pseudopotential can

have as many as four real roots and as many as four uniform-v orbits

appear. An example of this is shown in Fig. 3, where we plot 63 corresponding

to the roots versus su for E = .1, and 0 = .5 and 1. The orbits with

uniform axial velocity correspond to the points of vertical slope in the

figure,and when S = .5 four such trajectories appear. Three of these orbits

6



are stable; however, the trajectory corresponding to point A in the figure

represents a fundamentally different class of solution than the other

three. The behavior of the pseudopotential for values of Bu in the

vicinity of a stable orbit is shown in Fig. 1. In contrast, the behavior

of (P with $u in the vicinity of point A is shown in Fig. 4 in which the

uniform-v3 trajectory is obtained when the central maximum is zero. Arbi-

trarily small deviations from this condition result in drastically different

types of trajectory with large fluctuations in the axial velocity. Such

uniform-v3 trajectories are referred to as being "orbitally unstable,"

since a bunched electron beam with a spread in the axial invariant in the

vicinity of point A will rapidly disperse.

As $0 decreases further, the range of u in which D possesses four

real roots increases, as shown in Fig. 5 for B0 = .1. in particular, the

high axial velocity, uniform-v. trajectory for motion parallel to B becomes

more pronounced as So decreases further relative to E. This characteristic

of the solutions in the small- 0 regime exists even where c > I (see Fig. 6).

Finally, we conclude that the requirement that electrons propagate with

relatively small fluctuations in axial velocity is most difficult to satisfy

when 0 1 1. The natural corollary, therefore, that extremely broadbanded

emission will occur in this regime is supported by observation.17,18

In order to treat cases of nearly uniform axial velocity we

implicitly restrict consideration to trajectories corresponding to the

stable uniform-v- solutions. In this limit, we can write approximate

solutions for the momenta in the laboratory frame as

7



- Iwpl
Px Q 0 -kwV, Cos kwz + P cos *0t - P y sin Q 0t,

P - 0w ,, sin kwz + P sin 20
t + P cos t, (7)

w 

P -PH 2 0 - k - [Px cos (kw - Qot) - Py sin (kwz -t)]

where p , Px and p are approximate constants of the motion, and v,, E
p,,/ym. Observe that in the limit of a vanishing axial guide field Eqs.

(7) recover the well-known result in which P and P are the canonical

momenta in the transverse direction. This approximation remains valid

2 2 2
as long as P P «p , and the total momentum is given by

p2 2i + 2 wv )  1 12 (8)

to within terms of order E The form of these trajectories is shown

schematically in Fig. 7. Particle motion predominantly follows the

helical wiggler, but also contains a small component of Larmor procession

due to the axial field.

8



III. SPONTANEOUS EMISSION

The time-averaged radiated power P can be computed by means of

the equation

T/ 2
--lira T dtf dx "( t) • ("t), (9)

T- -T/2

where k(,t) denotes the microscopic radiation field, and
Nb

J(x,t) = -e E j(t) 6( - j(t)) (10)

j=l

is the source current composed of the sum of the microscopic currents

due to all Nb electrons in the beam during the interaction time

T/2 <t < T/2. The radiated power can be expressed in terms of the

Fourier amplitudes of the microscopic fields and source currents in the

following manner

-- 2(2r) 4 lim f d3k dw Re ( • J ) (11)
T-_°  0 %

where the asterisk (*) denotes the complex conjugate, and the Fourier

amplitude is defined as f1 , f d3 k f d exp (iwt - ik. x) f(k,t).

A self-consistent relation between the fields and source currents de-

pends upon the dielectric properties of the beam, and can be written as

(12)

where the dispersion tensor

n2  9+n (13)

n (- ck/-) is the index of refraction, is the unit dyadic,

9



and k is the beam dielectric tensor. For the case of a

diffuse beam, in which the radiation frequency greatly exceeds the electron

plasma frequency, I and (12) can be inverted to give

2 2 1~
- (47rw)/( w-c 2 k2 ) k (14)=~ - W JkJ 14

As a result, if the emissivity I(w, Qk) is defined to be the power radiated

per unit frequency and volume into the solid angle 2 subtended by k,

then we find
6 2.3 2J2

n(P, j) = (2T) (/Vc ) lim 1 (1'k - Ik' k wI k W/c' (15)

where V is the total volume of the interaction region. The radiation

spectrum, therefore, can be determined from (15) with a knowledge of the

single-particle orbits (7) necessary to compute the source current.

Using the trajectories in (7), we find that after transforming

to the frame (e, = cos x e +sin e e = -sin'e + cos &e, and

tanp =ky/k) in which k=k e +k e (k = /oikx k y T) the source
y x . '"V zz x y

current is

Nb 
C

_ e nlir E exp(-i E
JW' (2) T- j=l )z,m,n=

sin [(w-k Z J () -(Z+n)k w Vl ) - (m-n) P(j ))T/2] e

7(w-k .(J) (Z+n)k v J -( -) j )  ep[b J)si ( ) -3-m( (j )  -)

) ~. 16)

exP [ib (J)sin(kwz(J) - ) -i$(kwo )]exp [i i) sink -"i)_, - in (kw-" (.i) )

10



(i~ th

where (j ) defines the initial position of the jth electron,

U)=tan- 1(P /P 9 , b~i = k OW/k (Q4j)-k ir~j)), bi H k V /DVxI W ) 0 w

(J) _-- k v(J)(J)/(Q )-k ")) 2,and V2 - (P 2 + PI)/ym. In addition,bxz z 
y w

J= ( (b ( j){ J (b (j ))Jm(b J)) 1,n dn l z m k,

i J)J(b(J))Jm(b0J)) + v (J)

k)J (b ())J(b)) '

w - m

where v = aW J/(Q 0 -kw), and J and J' are the regular Bessel function
w p p

of the first kind and its derivative respectively. In computing the

quadratic forms of the source current which appear in the emissivity (15),

we impose a random phase approximation to obtain
Nb

=(, e'w2 Z.T. Li ,+n,k'+n 6m-n,m "-n'
27c3V j=l ",mn=-- Z.m ,n'=-,

× j.~) ~ ).~) (u)-k x(l -(Z+n)kw ) -(m-n)s1 j) )

Zmn Zmn 'mnG %Zm Z11 w k=/c

We treat the emissivity in the limit in which b( ) << 1, which is gen-

erallv valid as long as 2,(-EB0v,,/,) << 1. When this condition is

satisfied the dominant terms in (18) are those for which n = n' 0,

and the emissivity takes on the relatively simple form

11



ThcV E W _- j sin )(b(J))J2(b ()

+ v(J)Jb(J)J b ) ) + vJ)J (b(J))Jm(bJ ))](1

(19)

x- 6 to-k ik- (i) U
II W1 0 kW/c,

where - cos-(.) is the polar angle between the wave vector and the

axial guide field.

We now convert the discrete sum over individual electrons in (18)

and (19) into a continuous integral over the beam distribution function

by making the replacement V-  nb fdPxdPdPFb, where nb - Nb/V and

the beam distribution Fb is assumed to be a function of (Px,Pvp). As

a consequence,

2 ~2 2
' - FkF cose-T(sine@ J (b)J (b,.

2-7c 3  f I xdPydpFb [ mh%)

+ vwJm(b)J(b,)+ViJ (b)J (bj] 2

x (w-kv) -Rk w, -mo (20)w 11 0k~a/c

where v,, is determined by means of Eq. (8). Since (8) is, in general,

12



a quartic polymomial for v' care must be exercised in selecting the

appropriate root. In the limit of propagation parallel to the axial guide

field, (20) reduces to the comparatively simple form

e2 2
n( ' @ - - fdPxdPydpFb w'IF- 8(w-(k+kw)vl)

(21)V1

+ - W-kv, -Q)t " c
c- 1 O k=w,'c

Thus, the incoherent radiation corresponding to the usual free electron
2 2

laser resonance at w v 2kwVH scales as vZ. The emission at the

cyclotron resonance is expected to be much less intense in this regime

in which it is required that V_ < vw  in the derivation of the relativistic

trajectories (7). An important consequence of this analysis is that the

emissivity in the presence of an axial guide field is enhanced by a

factor of (0/kwV - 1) -2. Note, however, that there is no singularity

2 2 =2 2since v ust be computed from V1 + =V V 4 c

In order to illustrate typical noise levels and spectra to be

expected in the course of operation of a free electron laser we assume a

distribution of the form F(Px,Pp) = nb(P ) Cp), and model the

variation in total momentum with a distribution of the form

(Cp) =  PTr p-p0 ) "  + Ap ,

where p0 characterizes the bulk momentum in the beam and Ap describes the

momentum spread. Note that since P. = Pv = 0 the component of the motion

13
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describing Larnor rotation is assumed to be negligible, and the noise

spectrum is predominantly associated with the free electron laser resonance.

As a consequence, the emissivity is of the form

~2 )w lu 3/2

(1Wq; ' s w k b) W Au2~hA (22)
Z 87T k w c (,,+k c) (sOY0-Uph) 2 (uph-uO)2  Au

where 2 47e2nb/m, Au = Ap/mc, u0  p0/mc, and

-1 + Q2

ww KCpnh = c i + 2w7k

As an example, we shall evaluate the emissivity (22) for a 1 Amp

electron beam characterized by a bulk energy of 1.4 MeV with a 3% energy

spread and a 3 cm beam radius. The beam density, therefore, is approximately

nb a- 1 x 109 cm-3 . In addition, we shall assume the wiggler amplitude and

period to be 700 G and 3 cm respectively, and the axial guide field to be

15 kG. The resulting noise spectrum is shown in Fig. 8. The peak intensity

is of the order of .013 pW-Hz '-cm and occurs at a frequency of aplroximately

240 GHb with a half-width of 6%.

14



IV. CO-HERENT DIISSION

In this section we derive the linearized gain by solution of

the Vlasov-Maxwell equations. If the distribution is wTritten as the

sum of equilibrium and fluctuating components fb(z,k,t) = Fb(Px,Py,p) +

(Z,,t), then the formal solution of the Vlasov equation for the

perturbed distribution is

7

6fb(z'pt(z)) = e V zI) (Tt(zt )) + .L(z')Xy (zt(z')) -F- (23)

0

to first order in the radiation fields, where the solution is parametrized

in terms of the axial distance from the start of the interaction region7

(at 7= 0), and t(z) tosf dz-/v(z) is the sum of the time required

for an electron to traverse the distance and the entry time to, The

transverse components of the trajectory, therefore, are written in the

form Px = p cosk 7+PxCOS 2ot(:)-Pv sine ot(:), andPv = Pw sinkwz +

Pxsin2 0t(z) + P cos2 t(z).

We assume plane wave solutions of the form exp(iwt) and choose

to work with scalar and vector potentials of the form

.t(zt) =iw(z)exp(iwt) + c.c.,

and

(-,t) = 1 5~(:)exp(-iwt) + c.c.,

15



where it is evident that z = 0. After transformation to the basis

S(6 + i ) therefore, the perturbed distribution can be written

as 3fb(z,,T(z)) ib(z,)exp(-iwt(z)) + c.c., where

0Z

+ iw(p"(z').A(z') p(z') A(z))] 1.

+ exp(i2et(z')) (iw-v(z,); 37x (

t( )0 vZ z -z Y)

+ exp (-iQ 0t(z'))(i-v z')' )>.A (z') (4 i Fb

Pipx, 'A+ =(6A~ i6A ),and t(z,z') dz-/v,(z-). Using

(24) the perturbed current, 5 (z,t) (6J+(z),+ 6J_(z)+3Jz(z)eXp(-iwt)

+ c.c., can be computed as follows

f dPdPvdp - 6 (z,p) (2S)

Since the assumption of small P x and P is central to the analysis,

we shall adopt an equilibrium distribution of the form

Fb(PX,Pvp) nb (Px),(P )Gb(P), (26)

in the interest of computational simplicity. Here Gb(p) is an arbitrary

16



function of the magnitude of the momentum subject only to the

normalizationf dppGb(p)/pz = 1. Using (26), we find the perturbed currents

2 2
T- __+_, pJ+ c dp -P-- exp(+ i20t(z)) D++ exp(+i2 T(z)) - D

0 Z p~J-P.

+ p + i D - i D_-p. - Gb(P), (27)

P =P =0xy

6J c dp l (#+i v) D+ + (D-i~~ D (8
P =P =0

x v

where Pd pP + _D-p), +  P+exp( ikw), L(z, ) D (z-z)/V,
z I-)

4 -e nb/m,

D+ -- e-p(/iQ0 T(Z)) (5A+( 6- + (0) exc(i (w;%) z/vz)

zOdz-6A+ (z')exp (iwQ 17(,z,)) (29)

7-00

and

D - YMcf d -w La:P+)+ A+(z)+ + ()) (30)

0 cp

17



, . --.x .. . - -- i - f -. '. .-.. - gi L i - I Z r'
'  

.- . - .. . -_ - .. ....

for P = P = 0. The dispersion equations are obtained by using thesex y

perturbed currents in the wave equations

az + +(z)=- +
C-

8 Ti (31)

We are primarily interested in the low gain, tenuous beam limit

in which wb << w and the wave amplitudes vary little over the length of

the interaction region. This is the regime appropriate to the experiments

conducted at Stanford University.1,2  In this regime collective effects

are unimportant and the space-charge potential can be neglected. In

addition, the coupling between the electromagnetic modes described by

Sa")
5+ and 6A scales with p"pz. However, the assumption of low gain implies

that this parameter is small, and we can focus attention on one or the

other of these modes exclusively. We choose to consider 6A+, which in the

low gain regime can be represented as

5A (z) = 5A (0)exp(i dz'k+(z')) , (32)

where IImk (:)I << IRek+(z)l. Under the assumption that k (z) k + 6k+(7),

where k is independent of axial position and 16k+(z)/kl << 1, the dispersion

equation becomes

18



2 2 2k /C 0, (33)

and

2 2 sin(w/1r-k-k )zIm~k+(z) _ b dp 5 mB"a /v -- kw
- 2kc 2  - w / 11- - p

2

pz w w Q0 (i Cw-)
ypz 2-- kw~ -Q 0 w-(k+kw k, - -0

20  (34)

(k+O)(w-%okxl) sin (w/v -k-k 3:

Y~~z kwV -% -2-I-k lk sin(w/Vll / -~ b ()

2where w - Pw/P. This result reduces to that found by Sprangle and
W z

Smith 4 in the limit of a vanishing axial magnetic field.

The total gain over an interaction region of length L is defined

as GL - _$L dz:m6k+(z). Integrating (34), therefore, we find
L 0

G fdp~ (P) mL_1(2 sinew-L - ---- L (p) L~ k~

L kc' 0 4a
W

w -- kwLg-Q sine SQL/ w, + sin
-- + i W + W 0  W

2~1 w e yp~ 2z v k-
WW 0 IV

11 CY

19



where 9w (a/v1 k-k,,L/2 and 6,, (w/vIj/v-k)L/2. If the beam

is sufficiently cold that a distribution of the form

P7
Gb(P) = p 5(p-po)  (36)

can be used, then the total gain becomes

L 3 w____ L 2200 L sinelv0 \GL % -- y T '2 \2 - (lzO )~v we
0w z Q "WO ~ W

kL -( o+ ~ ok lo %l- vf %)- (w nslo' /%.

L 0L ) sin- 0  (37)

ik Li 
Q

kw )ok v 2 kI~ o _k v

w+  h0 o -- w 0 0 Ig

Q 0 -Q 0 eg s o (7)
kv10-Q0 w 2jO 0 or elo g

In Eq. (37), y0 - (1 + p/c-)-, + -- (1- V,/c -, s - o

Pw0~ - w PJ-0/(%0-kqV 110)Y and pi0 and vj10 (- p110/y0m) are determined by
2 2 2

the appropriate solution to Po = Pw + P110. It is clear from (37),

therefore, that wave amplification can occur, in principle, for frequencies

corresponding to both the usual free electron laser resonance

(w _ k+ k~)v! 0) and the Doppler-shifted gyroresonance (w £ o +k!
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If the pump period is short compared to the length of the

system, the gain for frequencies w _4 (k+k )v is dominated by the

first term in (37)

2 3 2 2GL w2 w b L k Y (sinewo2 
z 0 wO ", -0r2 a (38)M 16y 0Yov 0  0(l w )-k vj ewo wo

The extre-ma occur for Iwo + 1.3 at which (sino/6 w) 2 /awO eo .54,

which correspond to frequencies

w - 2yO 2 vi 0 (1 ± 2. 6/kwL), (39)

and peak gains

2 Y2 ;2/+ .068 8 0  2 (k L)3 1 2 0OwO 0 (40)
L max Y kwc Q -(1+ kv ) O

where the plus or minus sign must be chosen to give a positive gain in (40).
4 l,9- ''

These expressions for the gain are similar to those found previously ""

in the limit of zero axial field. The principal diferences between this

result and those found previously are that (1) gain can occur for both

frequencies shown in (39), and (2) a singularity is introduced for kwvj O

S 102) which implies that the effect of the axial guide field can be to
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substantially enhance the small signal gain over the case in which no guide

field is present. Note, however, that the singularity is a product of our

choice of a monoenergetic beam. The inclusion of an energy spread can be

expected to broaden the resonance and remove the singularity.

We now focus on the effect of the axial magnetic field on the gain

for the free electron laser resonance. If A denotes the ratio of the gain

in the presence bf an axial guide field to the appropriate expression in the

limit B0  0, then it follows that

2 2 2 2 2-
2 E 3v + (-I)LE + (I-1) YO -,

A = 3- Z , (41LE - ( J[-E) : + (P-l)2 y0
2 J

where - k vi0 /, and v 0 must be computed in a self-consistent manner to

recover the constant-v 3solutions in (5). As a result, A can be expressed as

a function of E, 3v' and 0 (where the choice of constant-v3 solutions im-

plicitly selects Bu). With these considerations in mind we plot A versus

for fixed values of total electron energy and wiggler period and

amplitude in Fig. 9c. We shall restrict consideration to stable uniform-v-

trajectories propagating parallel to the axial guide field. We choose

v = .97 and P 1kwc = .07 and plot the variation in v0 with 0 in Fig. 9a.

Evidently there is a stable high axial velocity trajectory (orbit I) in the

low- 0 regime (< .72 for the chosen parameters), as well as a trajector-

which varies widely in magnitude with %0 (orbit II). Since the frequency

of the amplified modes scale approximately as v1 10, an electron beam

characterized by trajectories in group I can be expected to excite high

frequency waves for all accessible values of 10. In contrast, trajectories
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in group II can give rise to a wide spectrum of oscillations and, for the

chosen parameters, and high frequency waves will result only for > 1.

This is clearly shown in Fig. 9b in which we plot the resonant frequency

versus 60 for both classes of orbits. The significant feature which we

are concerned with, however, is the effect of the axial guide field on

the small-signal gain. To this end, we plot A versus 30 in Fig. 9c for

the stated parameters. We observe, first, that A > 1 throughout the

entire range of 0 'accessible to orbits in group I and, hence, the gain

is enhanced relative to the zero axial field (S0 - O) limit. In addition,

significant enhancements in the gun are possible near the indicated resonance

at

0  2/3 -(l 21)

which is the orbital stability boundary discussed previously in the

regime in which a0 < -%10/c. The resonance condition is not found for

orbits in group II, however, since 0 > v110/c for all such trajectories.

Indeed, A vanishes for a0 = 1.39 in the range of axial fields studied.

Enhancement in the gain for these orbits occurs only for limited ranges

of s0. A significant enhancement is found in the low-%0 regime (i.e.,

.1 < 30 < 1.34), but corresponds to comparatively low frequency waves

(see Fig. 9b). Enhancements in the gain for high frequency waves is

found only for a limited range of axial field strengths (1.45! < S0< 1.8),

but is at most of the order of 35%.

The enhancement in the gain for axial fields such that 0 is of the

order of unity is readily explained from consideration of the behavior of
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- --- S---. . .. .

vw. It is clear that for axial fields in which 0 kwj10 (i.e., B0  1)

large enhancements in the wiggle velocity vw occur. This is the source in

the enhancements in both the gain and emissivity. However, as B0 continues

to increase vw - ev0 and the wiggle velocity decreases relative to that

found in the zero axial field limit.

In the absence of an axial guide field the small signal gain scales
_2 ,2 2.

as the square of the wiggler amplitude (i.e., 2/kwC ) which is also the

square of the wiggle velocity. However, for finite values of the axial

guide field this variation is more complex and the gain does not increase

monotonically with either Qw/kwc or the wiggle velocity. This situation

is illustrated in Fig. 10, in which we plot the peak gain (solid line) and

frequency corresponding to peak gain (dashed line) versus Qw/kwc for

a0 = 1.13 and v/c = .96. For small values of this parameter the gain does

indeed scale as the square of the wiggler amplitude, but a peak occurs at

Q kwC - .012 after which the gain rapidly drops to zero. In addition the

frequency monotonically decreases throughout. Note that while aw/kwc does

not equal the wiggle velocity in the presence of an axial field, the

decreasing frequency implies a decreasing axial velocity which, in turn,

leads to an increasing wiggle velocity. This is illustrated more clearly

in Fig. 11 in which we plot the variation in the axial velocity versus

46w/kc for v/c = .96 and .75 and 1.13. For0 = 1.13 all orbits are

of group II class and the axial velocity is a decreasing function of

a4w/kwC over the range studied. Since this means that the wiggle velocity

increases with the wiggler amplitude over this range, it must be concluded

that the small signal gain cannot necessarily be increased by a simple

enhancement in the wiggle velocity.
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For sufficiently smaller values of 60, group I orbits appear (see

Fig. 11 for 80 = .75) over a limited range of wiggler field amplitudes.

The peak gain (as well as the corresponding frequency) for this case is

shown in Fig. 12, and describes the frequency and gain associated with the

group I orbits. We have restricted consideration to group I orbits, because

while group II orbits also lead to growth, the gain is weaker and the

frequency is relatively low (w , 8 kwC). For these orbits, the gain is

seen to increase with increasing wiggle velocity, and the singularity

mentioned previously is also found at the transition to orbital instability.

It should be remarked, however, that the small signal approximation breaks

down in the vicinity of the singularity.

The gain for gyroresonant emission is given by (w L Q + k0

GL ' "% whoo0%g

for a long interaction region (kwL >> 1), and growth is possible if

k 10  0 1and

% kwL s 'WoWsi

G 1(k + k)v 1 o (44)

Peak amplification occurs at the maximum of (sine g0/ego)" _ 1, which

corresponds to a frequency o (0 + kvL> and peak gain

,oL ( (1 ' ol/)Y.O + k c

(GL) - - -v ( 45)
oC- -0 0 w 10o
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The variation of the peak gain and associated frequency for

gyroresonant emission with axial field strength are shown in Fig. 13 for

parameters consistent with the calculation of the frequency and peak gain

at the free electron laser resonance presented in Fig. 9. Gyroresonant

emission is found only for group II orbits and, as expected, the frequency

increases with increasing a0" In contrast, the gain is found to decrease

with increasing axial field strengths. The large increase in the gain as

%0 approaches zero results from the fact that v110 also vanishes in this

limit. However, the small signal gain approximation breaks down in this

limit, and nonlinear effects can be expected to produce enhancements lower

than expected on the basis of the linearized theory.
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V. SUMMARY AND DISCUSSION

In this work, we h .-: considered both the spontaneous and induced

emission from a free electron laser in which a uniform axial guide field

is present. The existence of the axial field is found to introduce an

additional source of coupling between the axial and transverse electron

motion which, for sufficiently strong field levels (1',), can lead to

orbital instability for motion parallel to B0 . Since the existence of

orbital instability results in a rapid dispersal of an initially bunched

electron beam with disastrous implications for the expected radiation

levels, we focus attention on the parameter regimes corresponding to

orbital stability and orbits characterized by nearly uniform axial velo-

cities. The predominant transverse motion of these orbits is to track

the wiggler field; however, a relatively small component of Larmor ro-

tation associated with the guide field may also be present. Because of

this, emission can be expected for both the free electron laser and

gyrotron resonance conditions.

The spontaneous emission describes the ambient level of noise

within the device prior to the coherent amplification process. As shown

in Eq. (21), the spontaneous emissivity for waves propagating axially

contains components due to the transverse motion resulting from the

action of the wriggler and axial guide fields. In each case the level

of emission is proportional to the square of the magnitude of the trans-

verse velocities. This velocity corresponds to the canonical momentum

in the transverse direction for the gyrotron mode (w =- 0 + kv) ), and

to the wiggler velocity vW for the free electron laser mode
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(w - (k+k )v1. It should be recognized that the presence of a finite

0 leads to an enhancement in v w and, consequently, in the free electron

1 -2laser emissivity by a factor of (2/k - 1). As discussed in Sec. IV

the limit in which 20 = kwv is not achievable.

Enhancement in the linearized (or small signal) gain also

expected to result when an axial guide field is present. For the ten-

uous beam, low gain regime the enhancement of the gain is expected to be

greatest for parameters in the vicinity of the transition to orbital

instability (denoted by the dashed line in Fig. 9) which corresponds to a

beam characterized by orbital stability. In order for the analysis to be

valid for orbitally stable beams, however, stringent requirements on beam

quality must be satisfied because a small energy spread can lead to a

rapid breakdown in the coherence of the beam. In addition, the small-

signal gain approximation must break down in the vicinity of the resonance

(i.e., the transition to orbitalinstability). Finally, significant

enhancements in the gain are expected to occur for low wavelength

oscillations only in the low-$0 regime.
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Fig. 1 - Graph of the pseudopotential b versus x for e .1, v/c = .97
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Fig. 4 - Graph showing the variation of the pseudopotential with u in

the vicinity of an orbitally unstable uniform-v5 trajectory.
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Fig. 6 - Graph of the bounds on the axial velocity versus a for =3,

v/c = .97 and a0 = .01.
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Fig. 7 -Schematic representation of the single-particle trajectories.
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